PRELIMINARY 2017 STOCK ASSESSMENT RESULTS FOR THE EASTERN AND MEDITERRANEAN ATLANTIC BLUEFIN TUNA STOCK

T. Rouyer ${ }^{1}$, A. Kimoto 2, L. Kell ${ }^{3}$, J.F. Walter ${ }^{4}$, M. Lauretta ${ }^{4}$, R. Zarrad ${ }^{5}$, M. Ortiz ${ }^{3}$, C. Palma ${ }^{3}$, H. Arrizabalaga ${ }^{6}$, R. Sharma ${ }^{4}$, T. Kitakado ${ }^{2}$, N. Abid ${ }^{7}$

SUMMARY

Compared to 2014, the present assessment differs on several respects. During the 2017 data preparatory meetings, number of changes have been presented, among which the revision of the task I and task II statistics, the selection of the indices of abundance. In particular, this led to completely revisit the catch at age matrix. As a consequence, previous model specifications could not be used anymore. Whereas the 2014 assessment updated the catch and abundance index data up to 2013 and used the same model specifications as in the 2012 stock assessment, the present assessment present a complete revisitation of these. VPA2-Box was used to estimate the stock status, using a broad spectrum of settings. The resulting models were tested and compared on the basis of their diagnostics, so that the best models could be identified. In particular, different scenarios for Fratio, variance scaling for indices, recruitment constraints and vulnerability were tested. This document will serve as a basis for the 2017 EBFT stock assessment.

RÉSUMÉ

Par rapport à 2014, la présente évaluation diffère à plusieurs égards. Pendant les réunions de préparation des données de 2017, plusieurs modifications ont été présentées, parmi lesquelles la révision des statistiques de la tâche I et tâche II, ainsi que la sélection des indices d'abondance. En particulier, cela a conduit à revoir complètement la matrice de prise par âge. En conséquence, les spécifications antérieures du modèle ne pouvaient plus être utilisées. Alors que l'évaluation de 2014 mettait à jour les données de l'indice d'abondance et de capture jusqu'en 2013 et utilisait les mêmes spécifications du modèle que celles de l'évaluation du stock de 2012, la présente évaluation en fournit un remaniement complet. VPA2-Box a été utilisé pour estimer l'état du stock, à l'aide d'un large éventail de paramètres. Les modèles résultants ont été testés et comparés sur la base de leurs diagnostics, afin que les meilleurs modèles puissent être identifiés. On a testé en particulier différents scénarios de Fratio, la mise à l'échelle de la variance pour les indices, les contraintes du recrutement et la vulnérabilité. Ce document servira de base pour l'évaluation du stock de thon rouge de l'Est de 2017.

RESUMEN

En comparación con 2014, la presente evaluación difiere en varios aspectos. Durante la reunión de preparación de datos de 2017, se presentaron varios cambios, entre ellos la revisión de las estadísticas de Tarea I y Tarea II y la selección de los índices de abundancia. En particular, esto condujo a reexaminar completamente la matriz de captura por edad. Como consecuencia, las especificaciones previas del modelo ya no pudieron utilizarse. Mientras que la evaluación de 2014 actualizaba los datos del índice de abundancia y de captura hasta 2013 y utilizaba las mismas especificaciones del modelo que en la evaluación de stock de 2012, la evaluación actual presenta una completa revisión de ellas. Se utilizó el VPA2-Box para estimar el estado del stock, utilizando una amplia gama de ajustes. Se probaron los modelos resultantes y se compararon

[^0]basándose en sus diagnósticos, para poder identificar los mejores modelos. En particular, se probaron diferentes escenarios para Fratio, varianza escalada para los índices, restricción del reclutamiento y la vulnerabilidad. Este documento servirá como base para la evaluación del stock de atún rojo del Atlántico este de 2017.

KEYWORDS

Atlantic bluefin tuna; stock assessment

1. Introduction

The update assessment of the East and Mediterranean stock of Atlantic bluefin Tuna (EBFT) stock has been performed during an intersessional meeting in July 2017. This update builds upon decisions made during the 2017 data preparatory meeting held in March 6-11 2017 in Madrid. It includes updated and revisited catch data, which were obtained from a revision of task I and task II statistics. As proposed during the data preparatory meeting, a suite of different specifications have been investigated to test the sensitivity of the VPA to different technical assumptions and the choice of the CPUE series so that a broad spectrum of models could be compared and model selection made on the most objective basis.

In 2014, Run 1 was used to assess the impact of each change in data (catch-at-age, weight-at-age, partial catch-atage, and CPUEs). Other runs were then set-up to test effects of splitting some indices, leaving out several years for some indices, different age plus and different Fratios scenarios etc... In the present assessment, due to the amount of changes in the original data, such gradual changes could not be made. For instance, as the catch at age matrix was completely new following the update of the task I and task II statistics and the decision to start the VPA in 1968, technical assumptions such as the Fratio scenarios used in the past could not be used anymore and had to be re-investigated. In addition, the indices of abundance used in the past were also changed and their relative weighting in the VPA was also investigated.

Investigating such a broad spectrum of technical settings led to the definition of a large number of runs, which could not be handled by simply looking at results. A model selection approach was then used to eliminate unrealistic runs or runs plagued with bad retrospectives. A reduced set of models was then identified by model classification based on the Akaike Information Criterion. For this set, the diagnostics were closely investigated and compared (Walter 2017). Several sensitivity runs were performed to compare their performance and choose the most appropriate best case model. In order to focus on model structure and performance, no status determination or projections are presented here.

2. Materials and method

2.1 Data inputs

2.1.1 Catch at age

The updated catch-at-size takes into account only the new/revised series submitted before the deadline of June $13^{\text {th }}$ 2016 (Annex 1). The substitution rules used for the 2017 assessment can be found in Anon. (in press b) One important aspect is that compared to 2014, the inflated catch were chosen as a base case, as it was well known that the catch were under-reported (Anon. (in press a)). The age structure of the 2014 catch-at-age and the updated one displayed some important differences (Figure 1). In the 2014 assessment a very large number of age 1 fish was found in 2000 compared to the other years. However, after the revision of task I and task II statistics, particularly the size structure of purse-seine catches (Gordoa et al. 2017), the new data did not display such a feature (Figure 2). Comparing the catch for the different ages over time displayed main differences for ages 2 and 3, for which less individuals were attributed in the 2017 data (Figure 1). Overall, the 2017 catch at age matrix displayed less individuals for the younger ages (1-4) from 1968 up to 2007 and for older ages from 2007 onwards (Figure 2).

2.1.2 Catch per unit of effort and indices

Very important changes were made in the CPUE indices that were used. During the data preparatory meeting, a new set of indices was decided. Nine indices were included in the 2017 assessment: the French Aerial survey, the Japanese longline operating in the North of 40 degrees (splitted in 2009/2010), the Japanese longline that operated in the south of 40 degrees, the Japanese longline that operated in the Mediterranean, the Moroccan and Portuguese traps, the Moroccan and Spanish traps, the Spanish baitboats in the Bay of Biscay (historical period), the Spanish and French baitboats in the Bay of Biscay (recent period) and the Western Mediterranean Larval index (Annex 2). The Moroccan and Portuguese trap, French aerial survey, and Western Med larval index were not used in the 2014 assessment (Figure 3). Details about the discussion on their selection and their construction can be found in the report of the 2017 data preparatory meeting.

2.1.3 Weight at age

In the 2014 assessment, the weight at age (WAA) was computed as the total yield at age divided by numbers at age. In the present assessment, this method was employed to compute the WAA for the indices of abundance. However, for the spawning stock biomass (SSB) it also makes sense to use the growth curve as the catches might not be representative of the spawning stock biomass. As it was no strong rational basis to favour one approach instead of the other and since the assessment results were likely to be sensitive to this assumption, the weight at age were thus computed following two methods.

Method 1 used the growth curve approach. The growth curve (Table 1) was used to compute the weight at age for the first ages. The plus group was calculated as a weighted average of the weights of the older ages from the growth curve (Annex 3). The weighting used was obtained as the relative contribution to the catch of each age in the plus group. The weighting was necessary as equal weights attributed to all the ages in the plus group, led to very high weight at age for the plus group as for instance 29 year-old fish were attributed the same importance as 12 yearold fish. Method 2 was similar to the 2014 method; the WAA was computed as the aggregated total yield at age divided by the catch numbers at age (Annex 3).

The weight at age obtained from both methods were substantially different from each other, but also from the weight at age used in 2014 (Figure 4). The WAA obtained by method 1 provided larger estimates for all ages compared to 2014 and to method 2, particularly for age 3 to 9 . On the contrary, method 2 provided lower weights for ages 4 to 10 plus compared to the 2014 weight at age. Similar results could be obtained when using 16 plus age group.

2.1.4 Partial catch at age

As the indices were not simply updated and substantially changed from the 2014 assessment, a direct comparison between the PCAA used for both assessments was not possible (Figure 5, Figure 6 and Annex 4).

2.2 Model and hypotheses

2.2.1 R and the VPA

The model used was VPA-2Box (Porch 1998). The model was run from a suite of R codes allowing for launching a large number of runs. This allowed to use parallel computing to perform model selection on a large range of models and to analyze the sensitivity to different specifications.

2.2.2 Base case hypotheses

The base case hypotheses were decided during the data preparatory meeting (ICCAT 2017) are summarized in the following table (Table 1). The natural mortality was changed compared to 2014, as was the maturity schedule.

2.2.3 Sensitivity runs

Other or previous parameter values were used to run sensitivity runs. These different values are summarized in the following table (Table 2).

2.2.4 VPA specifications

As the VPA is known to be very sensitive to the Fratio and technical parameters (Bonhommeau et al. 2015) and knowing that a large part of the input data was updated since the last assessment (ICCAT 2017), it was chosen to test a large spectrum of specifications. As there was only little a priori rules on how to set the VPA in such a context, this approach aimed at identifying models that could provide stable results.

The technical parameters investigated were:

- Fratio scenarios
- The number of years for recruitment penalty
- The number of years for vulnerability penalty
- The strength of the vulnerability penalty
- The variance scaling for indices

The Fratio is known to have a substantial effect on the VPA results, 20 scenarios were then set-up to investigate various possibilities (Table 3). All the random walk scenarios presented used type 3 estimate, as in a random deviation from the previous constant parameter. The number of years for recruitment penalty controls the departures of recruitment estimates between successive years. It was either set to 0,2 (as in 2014), or 8 years (Walter et al. 2017). The number of years for vulnerability penalty controls departures of vulnerabilities between consecutive years. It was either set to 0,3 (as in 2014) or 8 years. The Strength of the vulnerability penalty allows to control the strength of the constraints for the vulnerability penalty. Values ranging from 0.1 to 0.5 were tested. The variance scaling allows to control the weighting allocated to each CPUE. In the 2014 assessment and before, all CPUEs and indices were attributed the same value. The present work also explored that possibility to group the fleets by gear/type so that different weights could be estimated for each of these groups. The groups of fleets were the two traps (Moroccan and Spanish, Moroccan and Portuguese), the three Japanese longline indices (East and Med, North of 40, South of 40), the two Spanish baitboat series (before and after 2007), the French aerial survey and the Western Mediterranean larval survey.

2.3 Model selection/filtering

As it was explained previously, the approach chosen led to produce a large amount of runs. In order to make sense of these a model selection approach was chosen to filter out the unsuitable models. For each of the two methods to produce the WAA, the runs were investigated separately. A first selection was made to filter out the models for which the median spawning stock biomass was unrealistically high (>500.000) and for which the variability across the SSB retrospective runs were the highest. To do so, the variability across SSB retrospectives was quantified as follows. The median SSB of each SSB retrospective was calculated and then the distance between the $25^{\text {th }}$ and $75^{\text {th }}$ quantiles of these values was computed. The median of the distribution of this variability was computed across all models. Only the models that displayed a variability below the median were kept. The models were then ordered by increasing AIC and the three best models were selected according to their ranking and their diagnostics. A best model for each method to compute the WAA was then selected by inspecting and comparing the three best models.

2.4 Sensitivity analyses

The two best models were then subjected to different sensitivity analyses. To investigate the stability of the models selected, the effect of removing each index (Jackknife for indices) and then the effect of successively removing each single point of each single index (Jackknife year for indices) were inspected. In addition, 100 different seed numbers were run for each model to investigate whether a global or local solution was found. Finally A 100 different random assumptions for the terminal F (random draws of values in a uniform distribution between 0.2 and 0.45) were tested to further investigate the stability of the solution.

3. Results

3.1 Selection of models for the weight at age method 1

The SSB from all the different VPA settings were first visualised inspect the different trends obtained (Figure 7). The runs with the age plus group set at 16 seemed to produce more variable patterns depending on the Fratio scenario used. Some of the patterns obtained displayed very large changes in SSB over the time series. When the age plus group was set at 10 , two main trends were obtained. These two trends were less variable than for the 16 plus, particularly in the historical period.

The filtering procedure preserved 49 models out of 480 . These models did not seem to favour any particular set of settings except that not many models with age plus 16 were kept in the final set and they further displayed relatively higher AIC values (Figure 8). The models for which the Fratios were estimated by random walks seemed to display lower AIC values. The diagnostics for the runs with the best ranking were then inspected in order to select three best models. The retrospective patterns of the models were inspected and if no major issue could be found in the retrospective, then the model was kept.

The three selected models were all for age 10 plus and featured Fratios estimated by random walks (Table 4). However, the Fratio scenario used for the model 410 did not allow to estimate the Fratios for each year, but by 3 year time blocks (Table 4). For these three models, the variance scaling option was such that all CPUE indices were given the same weight. These three models all displayed the same general trends for the main variable of interest. They mainly differed by an offset in the SSB for Run 4690 and in the estimated F for the plus group (Figure 9 and Figure 10). It has to be noted that the trend in recruitment for Run 4690 differed from the other runs in the recent years as it displayed a high recruitment in 2008. The general trend of the models displayed an increase in SSB until 1975, then a decrease until 2007 and finally a sharp increase until 2015. The same consistency across the selected models was observed when considering the estimated Fratios, which all displayed a similar trend, lower than 1 from 1980 to 1995 and increasing up to 2 until 2015 (Figure 11). It has to be noted that the fluctuations of the Fratio were comparable to those of the recruitment. The three models looked stable as the AIC values obtained for 100 seed numbers were found to be very close to each other (Figure 12).

3.2 Selection of models for the weight at age method 2

The SSB from all the different VPA settings were first visualised inspect the different trends obtained (Figure 13). Similarly as for the weight at age method 1, the runs with the age plus group set at 16 seemed to produce more variable patterns depending on the Fratio scenario used. Some of the patterns obtained displayed very large changes in SSB over the time series. When the age plus group was set at 10 , two main trends were obtained. These two trends were less variable than for the 16 plus, particularly in the historical period.

The filtering procedure preserved 92 models out of 480 . As for the models using the method 1 for WAA, it did not appear that any particular set of settings were favoured (Figure 14). Not many models with age plus 16 were kept in the final set and they further displayed relatively higher AIC values. The models for which the Fratios were estimated by random walks seemed to displayed lower AIC values. The diagnostics for the runs with the best ranking in terms of AIC were then inspected in order to select the three best models. The retrospective patterns of the models were inspected and if no major issue could be found in the retrospective, then the model was kept.

The three selected models were all for age 10 plus and featured Fratios estimated by random walks (Table 5). All models 410 allowed to estimate the Fratios for each year using the Fratio scenario 20 (Table 5). For these three models, the variance scaling option was such that all CPUE indices were given the same weight. These three models all displayed the same general trends for the main variable of interest (Figure 15 and Figure 16). The models displayed an increase in SSB until 1975, then a decrease until 2007 and finally a sharp increase until 2015. The same consistency across the selected models was observed when considering the estimated Fratios, which all displayed a similar trend, lower than 1 from 1980 to 1995 and increasing up to 2 until 2015 (Figure 17). The three models looked stable as the AIC values obtained for 100 seed numbers were found to be very close to each other (Figure 18).

3.3 Best model for each weight at age method

The three models obtained for method 1 displayed very similar trends for each variable. The run 4690 displayed the lowest AIC, but it also displayed a sharper recruitment peak in 2008, which was not present for the other two models (Figure 10). In addition, run 4690 displayed larger departures from the two other models for the SSB and

Fplusgroup. The run 4688 was thus preferred as the best model for the weight at age method 1. The three models obtained for method 2 displayed very similar trends for each variable (Figure 16). The run 14562 displayed the lowest AIC and was kept as the best model for the weight at age method 2. The two runs displayed very similar fit to residuals (Figure 19). The variance estimated for each index of run 14562 did not show large differences between indices but generally less weight was attributed to the two surveys (French aerial and western Mediterranean larval), whereas more weight was given to the longliners (Figure 20). The reference points F01 and SSB01 were calculated for both models, which displayed higher values for F01 and SSB01 for run 4688 (Table $6)$.

3.4 Comparison to the 2014 assessment (Run 0)

The two best models were then compared to the 2014 assessment (Figure 21). The three models displayed comparable general trends for most variables. However, the runs 14562 (WAA method 2) and 4688 (WAA method 1) displayed even closer trends for all variables excepted for SSB, for which the Run 14562 was closer to run 0 than to Run 4688. The most salient deviations for fishing mortality were observed on the historical part of the time series. For the recruitment estimates, the most important differences were found around the year 2000. This last aspect might be explained by the revision of the size structure, which previously included a large number of young fishes around that period. The fishing mortality estimated for the plus group displayed the same pattern for each model, but between 1994 and 2007, run 14562 was closer to run 0 than to run 4688. The Fratios estimated for runs 14562 and 4688 displayed very similar trends (Figure 22). The different periods with low/high Fratios were also found consistent with the value fixed for the 2014 assessment (Figure 22).

3.5 Jackknife analysis by the removal of each index

The effect of each of the 9 indices used in the assessment were investigated by successively removing each of them and leaving the others (Figure 23). The results showed that the general features of the models were preserved. However, tor the SSB and the recruitment, the French aerial surveys seemed to affect the trend. Removing this survey was associated to less important SSB and recruitment in the recent years. The fishing mortality in the plus group seemed to be affected by the Moroccan and Spanish traps series, whose removal was associated to an increase in fishing mortality between 1994 and 2010.

3.6 Jackknife analysis by the removal of each point of each index

The stability of models 14562 and 4688 was further inspected by removing each point of each index and leaving the rest. The analysis showed that the trends of each variable were generally preserved (Figure 24). The most important effects were found for the fishing mortality of the plus group between 1994 and 2007. During that period the fishing mortality displayed different offsets for each run, but the inter-annual fluctuations were very similar to the original run.

3.7 Sensitivity to terminal F

The stability of the two best models were then further investigated by jittering the terminal F assumptions. To do so, 100 runs were produced with the same specifications than run 14562 and 4688 , but with drawing random values for terminal F out of a uniform distribution between 0.2 and 0.45 . The results did not display a very strong variability of the solution, which confirmed the relative stability of the two models (Figure 25).

3.8 Sensitivity to the catch at age matrix: using reported catch

The sensitivity of the two best runs to the catch at age matrix was investigated by comparing the original runs to runs with the same specifications that used the reported catch (Figure 26). A substantial effect could be observed as the level of SSB and recruitment decreased for both runs. The fishing mortality for ages 2 to 5 displayed similar patterns, but the shape of the fishing mortality of the plus group time series substantially changed from 1994 to 2000.

3.9 Sensitivity to biological assumptions

The sensitivity to different biological assumptions made (Table 2) were investigated for the two best runs by looking at the time series of the different variables for each combination (Figure 27). Changing the biological assumptions did not appear to affect the shape of the runs. However, they seemed to offset the SSB and shrink/expand the fishing mortality. As expected, a later maturity was associated with a decrease in the general
level of the SSB, but it did not seem to affect the fishing mortality. As expected, a change in natural mortality seemed to affect the fishing mortality levels. For instance, a lower natural mortality for younger ages was associated to a higher fishing mortality of ages 2 to 5 and a lower natural mortality for older ages associated to a higher fishing mortality for the age plus group (e.g. mortality=1 and mortality=2) .

References

Anon. (in press a). Report of the 2017 ICCAT Bluefin Tuna Data Preparatory Meeting. ICCAT, Madrid, Spain 611 March, (2017). Document SCRS/2017/01. 60p.

Anon. (in press b). Report of the 2017 ICCAT Bluefin Tuna Stock Assessment Meeting. ICCAT, Madrid, Spain 20-28 July, (2017). Document SCRS/2017/10. 106p.

Bonhommeau, S., Kimoto. A., Fromentin, J.M., Kell, L., Arrizabalaga., H., Walter, J.F., Ortiz de Urbina, J., Zarrad, R., Kitakado, T., Takeuchi, Y., AbidN., Ortiz, M., Palma, C., Pallares, P. 2015. Update of the Eastern and Mediterranean Atlantic Bluefin Tuna Stock. ICCAT, Collect. Vol. Sci. Pap. ICCAT, 71(3):1366-1382.

Ortiz, M.(2017). Catch Curve Analysis. Document SCRS/2017/23 (withdrawn).
Porch, CE. 1998. Virtual population analyses of Atlantic bluefin tuna with alternative models of trans-Atlantic migration: 1970-1997. ICCAT Collect. Vol. Sci. Pap. 52(3): 1022-1045.

Gordoa, A., Rouyer, T., and Ortiz, M. (2017). Review and update of the French and Spanish purse seine size at catch for the Mediterranean bluefin tuna fisheries 1970 to 2010. SCRS/2017/171 (withdrawn).

Walter, J. (2017). Proposals for Atlantic Bluefin Tuna Stock Assessment Models for 2017. Document SCRS/2017/036 (withdrawn).

Table 1. Description of the different base case assumptions.

Parameter	Description
Natural Mortality	Lorenzen $(0.38,0.3,0.24,0.2,0.18,0.16,0.14,0.13,0.12,0.12)$
Age plus	10 or 16
Maturity	$0,0,0.25,0.5,1,1,1,1,1,1$
Growth curve	Linf $=318.9, \mathrm{~K}=0.093, \mathrm{t} 0=-0.97$
Length Weight	$\mathrm{a}=0.0000196, \mathrm{~b}=3.0092$

Table 2. Description of the different parameters used for sensitivity analysis.

Parameter	Description
Natural Mortality	Lorenzen $(0.33,0.25,0.19,0.15,0.13,0.11,0.09,0.08,0.07,0.07,0.06,0.06,0.06,0.05,0.05,0.05)$
	2014 assessment $(0.49,0.24,0.24,0.24,0.24,0.2,0.17,0.15,0.125,0.1,0.1,0.1,0.1,0.1,0.1,0.1)$
	New SBT $(0.4,0.4,0.25,0.21,0.18,0.15,0.13,0.11,0.1,0.09,0.07,0.07,0.07,0.07,0.07,0.07)$
Maturity	Gislason $(1.07,0.59,0.40,0.30,0.24,0.2,0.17,0.15,0.14,0.12,0.11,0.11,0.10,0.10,0.10,0.09)$

Table 3. Description of the different parameters used for sensitivity analysis.

Scenario	Description
1	Fratio fixed to one for the whole time period
2	Fratio fixed to the $50{ }^{\text {th }}$ percentile $(=1.5)$ of catch-curve analysis
3	Fratio fixed to the $75^{\text {th }}$ percentile ($=2.3$) of catch-curve analysis
4	Fratio fixed to a shape that approxiamted the catch-curve analysis (3). Increase from 1.2 to 1.6 in 1990, then decrease to 0.6 in 2015
5	Fratio fixed to a shape that approxiamted the catch-curve analysis (3). Increase from 1.2 to 1.5 in 1980. Plateau to 1.5 for 20 years, then decrease to 0.6 .
6	Fratio estimated as a random walk with 5 years time blocks. The first block is fixed to 1 , the other blocks are estimated as random deviations from the previous block
7	Fratio estimated as a random walk with 10 years time blocks. The first block is fixed to 1 , the other blocks are estimated as random deviations from the previous block
8	Fratio estimated as a random walk with 3 years time blocks. The first block is fixed to 1 , the other blocks are estimated as random deviations from the previous block
9	Fratio estimated as a random walk with 10 years time blocks for the 40 first years and 3 years blocks for the last 8 years. The first block is fixed to 1 , the other blocks are estimated as random deviations from the previous block
10	Fratio estimated as a random walk with 10 years time blocks for the 40 first years and 1 year blocks for the last 8 years. The first block is fixed to 1 , the other blocks are estimated as random deviations from the previous block
11	Fratio fixed to 1 for the 40 first years and estimated as 3 years blocks for the last 8 years.
12	Fratio fixed to 1 for the 40 first years and estimated as 1 year blocks for the last 8 years.
13	Fratio estimated as a random walk with 5 years time blocks. The first block is estimated, the other blocks are estimated as random deviations from the previous block
14	Fratio estimated as a random walk with 10 years time blocks. The first block is estimated, the other blocks are estimated as random deviations from the previous block
15	Fratio estimated as a random walk with 3 years time blocks. The first block is estimated, the other blocks are estimated as random deviations from the previous block
16	Fratio estimated as a random walk with 10 years time blocks for the 40 first years and 3 years blocks for the last 8 years. The first block is estimated, the other blocks are estimated as random deviations from the previous block
17	Fratio estimated as a random walk with 10 years time blocks for the 40 first years and 1 year blocks for the last 8 years. The first block is estimated, the other blocks are estimated as random deviations from the previous block
18	Fratio estimated for the 40 first years and estimated as 3 years blocks for the last 8 years.
19	Fratio estimated for the 40 first years and estimated as 1 year blocks for the last 8 years.
20	Fratio fixed at 1 for the first year and estimated as 1 year blocks for the whole series.

Table 4. Specifications for the 3 best models selected after investigating the diagnostics. The models were obtained with the weight at age computed with the method 1.

Run	Fratio	Age plus	Penalty	SDpen	PenaltyR	VarScal	Mortality	Maturity	AIC	Obj Func
Run_4690	20	10	0	0.5	8	0	1	1	208.25	-110.74
Run_4688	20	10	3	0.5	2	0	1	1	219.03	-105.35
Run_410	8	10	3	0.4	0	0	1	1	221.61	-72.06

Table 5. Specifications for the 3 best models selected after investigating the diagnostics. The models were obtained with the weight at age computed with the method 2 .

Run	Fratio	Age plus	Penalty	SDpen	PenaltyR	VarScal	Mortality	Maturity	AIC	Obj Func
Run_14562	20	10	3	0.4	0	1	1	1	198.53	-119.60
Run_14548	20	10	3	0.5	0	1	1	1	202.99	-117.37
Run_14540	20	10	3	0.5	2	0	1	1	219.23	-105.25

Table 6. Reference points and associated uncertainty for the two best runs.

F01	$\mathbf{1 0 \%}$	$\mathbf{5 0 \%}$	$\mathbf{9 0 \%}$
Run_4688	0.09080	0.09702	0.10360
Run_14562	0.08487	0.09038	0.09653
SSB01	$\mathbf{1 0 \%}$	$\mathbf{5 0 \%}$	$\mathbf{9 0 \%}$
Run_4688	1508000	1543000	1578000
Run_14562	1219000	1237000	1254000

Figure 1. Main characteristics of the 2014 and updated (2017) catch-at-age. The top panel presents the age structure of the 2014 (left) and 2017 (right) catch-at-age in number. The bottom panel presents the age structure of the 2014 (left) and 2017 (right) in \%.

Figure 2. Comparison of the 2017 and the 2014 catch-at-age. The top panel presents the comparison for each age. The bottom panel presents the anomalies between both data over their common period.

Figure 3. Comparison of the catch per unit of efforts (CPUEs) in the 2014 ABFT stock assessment and the CPUEs for the 2017 assessment.

Assessment
-2017 method $\begin{array}{r}-2017 \\ -2014 \\ \hline\end{array}$

abs(value)
0
10
20
30
40
Sign

- Negative
- Positive

Figure 4. Weight ata age data. The top panel presents the comparison of the 2017 weight at age obtained by the 2 methods (growth curve and total yield divided by the catch numbers) for the 2017 and the 2014 weight at age data. The middle panel represents the anomalies in numbers between the 2014 and the 2017 weight-at-age obtained with method 2. The bottom panel represents anomalies in \% between the 2014 and the 2017 weight-at-age obtained with method 2 .

Figure 5. Partial catch-at-age for the 2014 (left) and 2017 (right) assessments.

Figure 6. Partial catch-at-age for the 2017 assessment for each fleet and age.

Figure 7. SSB obtained for the different settings using method 1 for the weight at age. The dotted line represents the best model for method 1 .

Figure 8. Best models selected presented as a function of the different VPA settings and hypotheses using WAA method 1 .

Figure 9. Retrospective patterns of the 3 best models selected, for WAA method 1.

Figure 10. Time series of estimated variables of interest for the three best models obtained with WAA method 1.

Figure 11. Time series of estimated Fratios for the three best models obtained with WAA method 1.

Figure 12. Histograms of AIC values obtained using 100 seed numbers for the three best models using WAA method 1. The vertical line indicates the 911 seed number used as the reference.

Figure 13. SSB obtained for the different settings using method 2 for the weight at age. The dotted line represents the best model for method 1 .

Figure 14. Best models selected presented as a function of the different VPA settings and hypotheses using WAA method 2.

Figure 15. Retrospective patterns of the 3 best models selected, for WAA method 2.

Figure 16. Time series of estimated variables of interest for the three best models obtained with WAA method 2.

Figure 17. Time series of estimated Fratios for the three best models obtained with WAA method 2.

Figure 18. Histograms of AIC values obtained using 100 seed numbers for the three best models using WAA method 2. The vertical line indicates the 911 seed number used as the reference.

Figure 19. Fit of residuals for the two best runs for each method, 4688 for method 1 and 14562 for method 2.

Figure 20. Variance estimated for each index of run 1456.

Figure 21. Comparison of the models selected for each WAA method to the 2014 assessment.

Figure 22. $\mathrm{F}_{\text {ratios }}$ for each run. $\mathrm{F}_{\text {ratios }}$ were estimated for runs 14562 and 4688, but were fixed for run 0 in 2014.

Figure 23. Jackknife analysis for the best models for each WAA method. Each line represent the results obtained by removing each index and leaving the others. The lines in bold indicate the original. runs.

Figure 24. Jackknife analysis for the best models for each WAA method. The model outputs were obtained by removing sequentially each point for each index. The lines in bold indicate the original runs.

Figure 25. Sensitivity analysis of the two models selected for each WAA method, to different terminal F assumptions.

Figure 26. Effect of using the reported catch instead of the inflated catch for the model selected for each WAA method.

Figure 27. Effect of using different assumptions for maturity and mortality. Natural mortality equal to 1refers to the best case, 2 refers to Lorenzen, 3 refers to the 2014 assessment values, 4 refers to the new Southern Bluefin vector and 5 refers to the maturity computed with the Gislason relationship. Maturity equal to 1 refers to the base case and 2 refers to the later maturity.

ANNEX 1 - Catch at age Matrix

Year	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10+
1968	6252	51012	62089	30813	12851	7265	5575	4967	4768	30000
1969	52761	92481	26676	12380	9923	8230	7448	6938	6432	36141
1970	103288	69625	14564	7176	7806	8210	7525	6326	5137	22736
1971	73203	74471	15790	5904	3892	5217	7098	7223	6080	25050
1972	53276	117743	52647	15259	5526	4095	4168	4174	3886	20617
1973	101774	92660	25230	6683	3785	5132	6833	6817	5653	21789
1974	89275	79988	54228	32707	14207	8984	9485	10023	9339	41846
1975	117222	97076	23770	13233	8508	6184	5629	6055	6750	56141
1976	33696	93730	46698	24930	14717	9873	8225	8122	8467	56253
1977	72614	101350	42840	18813	9487	6586	5269	4816	4852	44522
1978	136641	70271	27617	14164	7144	4209	3513	3602	3898	37386
1979	22924	55499	32648	14711	6930	4926	4559	4383	4180	29742
1980	62081	31778	36489	18286	8879	5821	4941	4935	5187	37200
1981	125079	92438	27362	11217	7871	7346	7471	7413	7009	32907
1982	202495	133310	59825	24117	12902	10452	10104	10005	9663	49698
1983	353454	128336	42108	20111	11974	9396	9426	9941	9909	48023
1984	137763	172952	61702	33842	20363	14567	12823	12293	11539	51644
1985	126183	184891	101583	43339	19708	10523	7521	7058	7251	42203
1986	244019	103246	60801	26833	14212	9737	7483	6703	6625	40129
1987	230300	182171	61870	28624	16119	10514	8070	7224	6852	33358
1988	391268	184373	96437	36177	18307	13211	11075	9954	9171	43782
1989	369861	166747	70461	41579	19787	12364	9912	8503	7476	35732
1990	240305	171685	97289	66015	32249	17234	12394	10511	9172	38660
1991	205080	191689	128064	70527	34252	18550	13645	12509	11547	43003
1992	320701	410882	188483	66425	29140	17955	13546	11819	10719	45709
1993	399243	571509	225584	79454	37423	22385	15128	11627	9614	38916
1994	548245	383200	135402	58210	39070	31519	26827	24116	21907	88624
1995	554136	277808	148751	69379	44593	32371	25114	21443	19429	91361
1996	832036	339393	258785	127365	54051	27735	19985	18004	16958	81513
1997	540766	403321	217445	105807	56485	35150	27353	24681	22424	85865
1998	387645	419954	325099	157887	68088	32651	21966	18576	16310	66542
1999	639971	365833	263610	117407	49149	30359	26173	24809	22300	76562
2000	241335	279236	178983	95190	49862	35273	32283	31820	29144	95866
2001	208599	311031	229700	123571	57886	37071	30312	27601	24841	88444
2002	212729	492763	202002	80527	41632	27916	23031	21855	21103	95502
2003	220683	330721	120294	59334	44768	33705	27860	26553	25846	109055
2004	199000	217709	128204	52774	34201	31290	30094	30266	29343	116630
2005	197040	120403	66418	43147	32772	28422	27735	28488	28303	131646
2006	60022	93381	91511	76247	55247	41562	36216	33426	29734	115674
2007	39511	105745	127435	171028	132177	77254	46958	34235	28281	115581
2008	63936	86574	62400	63700	45781	29152	20392	15528	12065	39818
2009	6340	30965	24845	27406	32247	29711	22488	16293	12083	37528
2010	5724	23099	23857	26111	22703	17508	12757	9100	6480	17191
2011	1785	6293	12291	16797	13938	9792	7445	6208	5355	22078
2012	99	3089	11126	13261	10846	8656	8001	7581	6852	27153
2013	10132	15296	11573	14387	12282	11133	10769	10141	8999	32499
2014	9973	15469	13444	13082	7829	5753	6839	8489	9011	37521
2015	13468	22995	25972	21217	10306	6617	7577	9358	10018	44915

ANNEX 2 - Indices and CPUES

INDEX	YEAR	VALUE	CV
MOR_SP_TP	1981	768.36	0.57
MOR_SP_TP	1982	1038.12	0.35
MOR_SP_TP	1983	1092.05	0.35
MOR_SP_TP	1984	1200.27	0.35
MOR_SP_TP	1985	814.46	0.35
MOR_SP_TP	1986	394.33	0.28
MOR_SP_TP	1987	433.53	0.28
MOR_SP_TP	1988	1014.56	0.28
MOR_SP_TP	1989	531.45	0.26
MOR_SP_TP	1990	614.37	0.23
MOR_SP_TP	1991	727.86	0.23
MOR_SP_TP	1992	313.95	0.23
MOR_SP_TP	1993	325.36	0.23
MOR_SP_TP	1994	341.9	0.23
MOR_SP_TP	1995	223.43	0.23
MOR_SP_TP	1996	375.22	0.25
MOR_SP_TP	1997	992.41	0.25
MOR_SP_TP	1998	925.14	0.25
MOR_SP_TP	1999	1137.45	0.25
MOR_SP_TP	2000	739.23	0.23
MOR_SP_TP	2001	1284.62	0.23
MOR_SP_TP	2002	1130.42	0.23
MOR_SP_TP	2003	662.66	0.24
MOR_SP_TP	2004	332.36	0.23
MOR_SP_TP	2005	677.39	0.23
MOR_SP_TP	2006	633.94	0.23
MOR_SP_TP	2007	1000.6	0.23
MOR_SP_TP	2008	634.18	0.23
MOR_SP_TP	2009	876.71	0.23
MOR_SP_TP	2010	1042.24	0.24
MOR_SP_TP	2011	674.97	0.23
MOR_POR_TP	2012	41.15	0.49
MOR_POR_TP	2013	88.58	0.54
MOR_POR_TP	2014	48.54	0.5
MOR_POR_TP	2015	66.98	0.54
JPN_LL_EastMed	1975	1.9	0.15
JPN_LL_EastMed	1976	2.15	0.12
JPN_LL_EastMed	1977	3.53	0.14
JPN_LL_EastMed	1978	1.5	0.15
JPN_LL_EastMed	1979	2.7	0.14
JPN_LL_EastMed	1980	1.69	0.16
JPN_LL_EastMed	1981	1.63	0.17
JPN_LL_EastMed	1982	3.32	0.13
JPN_LL_EastMed	1983	2.12	0.13
JPN_LL_EastMed	1984	1.62	0.12
JPN_LL_EastMed	1985	1.75	0.15
JPN_LL_EastMed	1986	1.32	0.14
JPN_LL_EastMed	1987	2.16	0.13
JPN_LL_EastMed	1988	1.35	0.14
JPN_LL_EastMed	1989	1.05	0.16

JPN_LL_EastMed	1990	1.41	0.14
JPN_LL_EastMed	1991	1.21	0.13
JPN_LL_EastMed	1992	1.03	0.14
JPN_LL_EastMed	1993	1.04	0.14
JPN_LL_EastMed	1994	1.12	0.16
JPN_LL_EastMed	1995	1.42	0.15
JPN_LL_EastMed	1996	0.5	0.22
JPN_LL_EastMed	1997	0.53	0.21
JPN_LL_EastMed	1998	0.71	0.17
JPN_LL_EastMed	1999	0.64	0.22
JPN_LL_EastMed	2000	0.74	0.2
JPN_LL_EastMed	2001	0.96	0.17
JPN_LL_EastMed	2002	2.05	0.15
JPN_LL_EastMed	2003	1.7	0.13
JPN_LL_EastMed	2004	0.82	0.18
JPN_LL_EastMed	2005	0.88	0.15
JPN_LL_EastMed	2006	1.91	0.15
JPN_LL_EastMed	2007	0.94	0.19
JPN_LL_EastMed	2008	1.22	0.17
JPN_LL_EastMed	2009	1.04	0.24
JPN_LL1_NEA	1990	0.47	0.35
JPN_LL1_NEA	1991	0.53	0.31
JPN_LL1_NEA	1992	0.88	0.24
JPN_LL1_NEA	1993	0.74	0.22
JPN_LL1_NEA	1994	0.93	0.23
JPN_LL1_NEA	1995	0.97	0.22
JPN_LL1_NEA	1996	2.84	0.22
JPN_LL1_NEA	1997	1.51	0.24
JPN_LL1_NEA	1998	0.87	0.25
JPN_LL1_NEA	1999	1.25	0.22
JPN_LL1_NEA	2000	0.98	0.22
JPN_LL1_NEA	2001	1.83	0.21
JPN_LL1_NEA	2002	0.82	0.22
JPN_LL1_NEA	2003	1.1	0.24
JPN_LL1_NEA	2004	0.84	0.22
JPN_LL1_NEA	2005	0.75	0.21
JPN_LL1_NEA	2006	0.83	0.22
JPN_LL1_NEA	2007	0.84	0.22
JPN_LL1_NEA	2008	1.17	0.21
JPN_LL1_NEA	2009	1.5	0.21
JPN_LL2_NEA	2010	2.22	0.22
JPN_LL2_NEA	2011	4.45	0.26
JPN_LL2_NEA	2012	7.7	0.31
JPN_LL2_NEA	2013	6.11	0.26
JPN_LL2_NEA	2014	9.7	0.3
JPN_LL2_NEA	2015	5.91	0.3
SP_BB1	1968	447	0.42
SP_BB1	1969	610.62	0.4
SP_BB1	1970	594.66	0.43
SP_BB1	1971	744.71	0.4
SP_BB1	1972	525.63	0.41
SP_BB1	1973	535.63	0.4
SP_BB1	1974	245.39	0.44

SP_BB1	1975	484.22	0.41
SP_BB1	1976	483.96	0.41
SP_BB1	1977	547.56	0.41
SP_BB1	1978	705.26	0.41
SP_BB1	1979	623.01	0.41
SP_BB1	1980	634.81	0.45
SP_BB1	1981	510.66	0.42
SP_BB1	1982	503.78	0.42
SP_BB1	1983	625.14	0.43
SP_BB1	1984	331.71	0.45
SP_BB1	1985	1125.74	0.41
SP_BB1	1986	751.21	0.42
SP_BB1	1987	1008.43	0.42
SP_BB1	1988	1394.68	0.42
SP_BB1	1989	1285.6	0.4
SP_BB1	1990	986.51	0.41
SP_BB1	1991	901.2	0.42
SP_BB1	1992	695.16	0.43
SP_BB1	1993	2093.55	0.4
SP_BB1	1994	1007.03	0.42
SP_BB1	1995	1235.91	0.41
SP_BB1	1996	1739.29	0.4
SP_BB1	1997	2246.41	0.4
SP_BB1	1998	879.51	0.41
SP_BB1	1999	339.77	0.44
SP_BB1	2000	960.44	0.4
SP_BB1	2001	704.49	0.45
SP_BB1	2002	687.42	0.42
SP_BB1	2003	444.91	0.48
SP_BB1	2004	1210.46	0.42
SP_BB1	2005	2383.57	0.4
SP_BB1	2006	850.09	0.48
SP_BB2	2007	2179.98	0.31
SP_BB2	2008	2154.01	0.3
SP_BB2	2009	955.38	0.3
SP_BB2	2010	2126.2	0.31
SP_BB2	2011	2785.47	0.3
SP_BB2	2012	2306.99	0.39
SP_BB2	2013	1569.13	0.44
SP_BB2	2014	678.29	0.41
FR_AER	2000	0.02	0.39
FR_AER	2001	0.01	0.37
FR_AER	2002	0.01	0.5
FR_AER	2003	0.01	0.35
FR_AER	2009	0.06	0.42
FR_AER	2010	0.04	0.52
FR_AER	2011	0.09	0.34
FR_AER	2012	0.04	0.32
FR_AER	2014	0.17	0.38
FR_AER	2015	0.09	0.34
WMED_LARV	2001	5.5	0.19
WMED_LARV	2002	2.76	0.26
WMED_LARV	2003	13.4	0.25

WMED_LARV	2004	9.03	0.2
WMED_LARV	2005	3.56	0.17
WMED_LARV	2012	41.05	0.07
WMED_LARV	2013	21.83	0.08
WMED_LARV	2014	25.41	0.1
WMED_LARV	2015	54.29	0.07

ANNEX 3 - Weight at Age Used for the Spawning Stock Biomass

Method 1										
Year	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10 plus
1968-2015	5.710	13.898	26.114	42.132	61.498	83.644	107.967	133.882	160.843	252.729
Method 2										
Year	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10 plus
1968	5.528	13.350	19.178	33.527	48.362	69.747	92.360	111.871	139.522	241.500
1969	5.287	12.297	18.785	34.761	51.578	67.563	93.221	114.565	137.239	239.357
1970	5.360	10.539	18.456	34.136	49.687	68.472	90.945	110.958	136.908	240.418
1971	5.534	12.188	22.649	35.164	51.529	69.517	92.153	113.599	130.197	257.689
1972	4.097	11.730	21.182	33.036	51.123	70.797	93.535	112.870	139.834	247.828
1973	5.891	10.962	19.904	32.619	50.366	66.523	96.561	113.012	133.733	262.603
1974	4.761	11.190	21.041	34.845	52.273	64.016	91.123	112.114	138.804	232.956
1975	5.700	11.524	22.661	34.623	47.408	69.546	91.115	112.623	136.284	253.167
1976	5.510	12.945	19.800	36.524	50.341	68.853	90.086	112.898	137.368	235.825
1977	5.119	12.571	24.771	33.028	49.556	69.640	88.047	112.184	136.309	257.722
1978	6.419	11.180	19.616	35.551	48.294	68.793	89.491	110.789	132.962	251.915
1979	7.195	16.227	22.225	34.222	50.512	69.461	89.583	112.556	135.378	242.455
1980	5.330	11.477	20.237	33.961	48.759	68.421	89.320	110.491	134.000	228.911
1981	5.431	11.661	21.159	34.046	49.041	67.902	89.542	110.906	133.744	215.897
1982	6.083	13.933	21.583	35.236	49.052	69.509	90.402	111.729	134.454	222.410
1983	5.464	12.640	20.514	33.120	49.324	67.870	92.370	111.787	137.885	211.949
1984	5.973	12.576	23.714	33.175	49.312	70.002	90.037	112.555	136.408	211.652
1985	5.236	11.611	21.761	34.649	49.625	68.397	89.243	112.465	135.726	218.884
1986	5.191	13.074	22.481	32.708	51.500	70.443	89.356	111.879	136.157	228.449
1987	5.565	10.986	19.877	34.130	48.578	68.901	89.105	110.686	134.934	212.179
1988	5.014	11.777	20.742	35.525	49.448	69.537	88.720	111.382	135.258	215.422
1989	5.870	10.834	22.809	30.958	42.799	69.550	91.212	111.548	134.427	224.149
1990	4.842	11.062	18.863	31.193	43.622	66.954	89.611	111.215	136.905	215.015
1991	5.329	11.145	21.032	29.907	46.555	71.104	91.452	113.281	137.986	199.052
1992	4.326	11.731	19.995	32.282	53.989	73.439	94.883	113.613	137.756	210.016
1993	4.357	10.871	18.663	31.693	51.433	69.644	85.904	105.876	129.742	219.296
1994	5.817	10.710	20.740	32.932	50.491	66.825	85.845	109.162	135.218	206.840
1995	5.570	11.745	19.950	31.985	49.430	67.677	88.965	111.869	137.521	222.486
1996	5.471	9.738	19.301	30.889	48.043	68.074	91.801	114.119	137.822	223.826
1997	5.484	11.454	19.284	33.079	50.238	68.399	89.562	113.989	137.016	204.761
1998	5.419	11.894	19.482	32.543	47.439	67.494	90.955	113.542	138.606	216.784
1999	6.244	11.857	21.776	29.331	48.484	69.558	94.436	111.294	137.274	196.196
2000	6.290	11.819	21.144	31.188	50.120	68.405	90.817	113.278	139.368	191.551
2001	6.740	11.144	21.033	29.091	48.657	67.744	91.263	112.534	134.531	198.767
2002	6.108	12.327	19.290	31.263	50.683	69.144	90.851	114.193	136.920	208.952
2003	6.590	11.637	20.551	33.405	52.740	69.898	91.108	113.363	135.466	203.625
2004	6.735	10.703	20.622	33.805	51.044	70.346	89.334	111.589	135.334	197.262
2005	6.607	11.356	18.748	33.405	51.858	69.759	91.684	113.477	136.127	207.906
2006	7.198	11.381	18.987	34.168	47.272	66.563	89.627	112.532	135.475	205.870
2007	3.653	11.525	22.243	35.045	45.976	62.074	86.494	110.836	134.835	209.103
2008	4.417	10.864	20.716	33.771	48.300	67.211	93.141	114.433	137.757	210.887
2009	4.421	12.933	20.863	34.762	50.511	68.899	88.553	111.977	135.133	207.428
2010	4.202	13.161	20.624	35.285	50.029	69.231	92.204	113.154	138.687	206.300
2011	5.413	11.642	23.512	33.530	50.541	69.764	89.296	116.271	137.047	217.738
2012	5.261	12.352	24.394	34.336	50.293	67.102	91.281	114.070	137.289	212.811

2013	3.349	10.082	21.220	34.233	49.124	69.114	92.004	114.838	140.854	203.318
2014	5.413	10.084	22.440	35.189	48.921	69.070	91.556	115.931	138.202	198.929
2015	3.025	9.944	19.507	33.878	48.971	66.333	90.823	113.783	137.719	202.524

ANNEX 4 - Partial Catch at Age

Index	Year	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10	Age 11
MOR_SP_TP	1981	0.000	0.000	0.000	0.153	183.824	1138.811	1668.342	2250.847	748.874	3153.915
MOR_SP_TP	1982	0.000	0.000	0.000	3.375	151.792	552.630	1977.553	1963.656	2079.274	7953.525
MOR_SP_TP	1983	0.000	0.000	0.000	1.892	7.568	18.447	45.975	299.683	501.279	8247.323
MOR_SP_TP	1984	0.000	0.000	0.000	31.755	240.008	436.721	1223.596	1777.706	3167.885	10810.641
MOR_SP_TP	1985	0.000	0.000	0.000	0.000	91.599	410.728	358.042	502.173	709.299	7633.485
MOR_SP_TP	1986	0.000	2.663	0.000	0.000	2.719	76.366	251.493	242.431	359.729	5122.522
MOR_SP_TP	1987	0.000	2.620	0.000	0.000	4.910	102.232	329.858	332.524	474.738	5662.663
MOR_SP_TP	1988	168.570	38.536	55.524	40.123	115.979	833.762	934.979	965.362	803.613	10743.396
MOR_SP_TP	1989	707.102	0.000	2.163	9.633	190.339	884.389	1461.493	1601.730	1070.756	6714.265
MOR_SP_TP	1990	1903.927	0.000	0.000	62.151	377.902	876.364	1583.073	3383.174	4174.974	13189.316
MOR_SP_TP	1991	0.000	0.000	0.000	227.856	4415.834	3863.604	2140.406	1962.691	2120.192	5826.326
MOR_SP_TP	1992	0.000	0.000	2.677	33.995	369.867	830.220	1385.732	1417.613	1161.934	5015.730
MOR_SP_TP	1993	0.000	0.000	0.000	65.364	171.620	349.767	366.752	374.970	502.812	6161.034
MOR_SP_TP	1994	3524.408	0.000	28.195	84.586	1924.678	2672.691	2073.400	962.664	848.332	6697.656
MOR_SP_TP	1995	0.000	0.000	18.652	182.959	281.304	299.281	215.905	315.187	879.157	4548.496
MOR_SP_TP	1996	0.000	0.000	4.767	111.143	278.901	222.144	227.122	260.023	599.794	6577.087
MOR_SP_TP	1997	0.000	0.000	29.853	485.183	1942.057	2184.649	1382.756	2175.491	2359.506	13667.321
MOR_SP_TP	1998	0.000	0.000	13.018	269.498	713.435	1153.735	1544.784	1759.425	2955.474	12191.202
MOR_SP_TP	1999	0.000	0.000	4.397	41.805	122.318	631.203	826.029	1501.085	1639.524	15189.168
MOR_SP_TP	2000	0.000	0.000	5.531	24.920	365.659	461.457	1043.057	2127.494	2618.378	10958.549
MOR_SP_TP	2001	0.000	0.000	43.542	189.549	184.631	529.664	1225.929	2628.962	3951.970	13948.648
MOR_SP_TP	2002	0.000	0.000	0.000	5.817	67.376	183.708	542.398	1549.154	2140.509	12510.051
MOR_SP_TP	2003	0.000	0.000	0.000	4.880	224.919	531.767	602.408	1457.676	3106.414	6733.798
MOR_SP_TP	2004	0.000	0.000	0.031	0.609	55.947	156.354	164.979	413.007	1538.032	8063.140
MOR_SP_TP	2005	0.000	0.000	11.291	2.258	49.118	232.040	597.885	1211.013	1295.135	9865.947
MOR_SP_TP	2006	0.000	0.000	0.000	164.881	544.106	2561.463	2703.067	3254.014	2197.788	7683.823
MOR_SP_TP	2007	0.000	0.000	0.000	197.403	651.430	3050.972	3090.517	3321.886	2255.910	10538.457
MOR_SP_TP	2008	0.000	0.000	1.468	3.524	61.688	136.293	325.876	941.343	2226.716	11926.596
MOR_SP_TP	2009	0.000	0.000	0.000	21.954	369.181	630.993	564.920	1365.665	2061.500	11257.452
MOR_SP_TP	2010	0.000	0.000	1.957	4.350	47.195	247.571	811.920	1197.879	2317.744	7865.557
MOR_SP_TP	2011	0.000	0.000	0.000	9.338	16.978	40.336	77.924	263.390	635.999	8126.116
MOR_POR_TP	2012	0.000	0.000	0.000	0.000	2.882	25.935	76.709	128.995	456.717	5189.648

MOR_POR_TP	2013	0.000	0.000	1.863	1.397	1.397	27.940	152.829	234.365	536.557	5133.673
MOR_POR_TP	2014	0.000	0.000	1.029	0.000	1.029	3.086	19.547	56.903	193.935	4862.566
MOR_POR_TP	2015	0.000	0.000	0.000	5.760	7.679	23.998	42.237	91.493	152.628	5227.842
JPN_LL_EastMed	1975	0.000	15.696	27.200	107.760	26.159	106.719	86.832	326.880	470.237	15476.414
JPN_LL_EastMed	1976	9.357	111.646	367.065	307.351	294.862	299.965	202.457	214.884	299.121	10978.542
JPN_LL_EastMed	1977	0.001	0.018	30.397	23.786	43.320	276.958	581.917	1015.313	1503.210	7569.438
JPN_LL_EastMed	1978	0.258	16.090	119.666	238.874	288.047	239.566	100.701	62.622	31.076	1920.861
JPN_LL_EastMed	1979	0.412	4.279	28.348	60.494	133.538	918.769	1247.736	2035.634	1237.288	690.182
JPN_LL_EastMed	1980	0.000	0.203	68.900	55.271	91.435	262.377	461.660	730.618	619.769	3678.910
JPN_LL_EastMed	1981	3.548	26.420	68.966	62.726	68.540	120.037	249.529	608.835	463.625	1940.824
JPN_LL_EastMed	1982	23.140	558.367	1127.250	1442.211	1189.842	3086.739	2704.287	2922.582	1591.186	9516.696
JPN_LL_EastMed	1983	0.001	26.299	172.996	298.505	1082.841	1306.628	1728.081	2158.942	2019.832	11137.466
JPN_LL_EastMed	1984	0.012	0.847	45.735	189.736	355.145	737.186	1109.651	2037.362	3797.158	7984.152
JPN_LL_EastMed	1985	8.587	57.288	174.777	127.388	285.698	346.039	580.863	373.789	523.898	5226.916
JPN_LL_EastMed	1986	0.210	18.490	51.629	100.665	364.244	366.975	328.036	427.918	431.379	3880.382
JPN_LL_EastMed	1987	0.001	0.006	14.492	43.675	136.133	505.664	839.556	760.223	677.244	4023.020
JPN_LL_EastMed	1988	0.263	8.766	47.978	142.973	99.958	389.380	841.835	1037.647	987.820	4815.388
JPN_LL_EastMed	1989	0.000	0.256	20.534	114.260	157.605	256.520	634.524	512.289	397.646	1945.530
JPN_LL_EastMed	1990	0.041	6.538	34.221	72.837	375.185	529.128	742.468	1014.233	1057.620	2980.400
JPN_LL_EastMed	1991	7.906	3.935	28.066	24.198	55.360	141.047	588.858	1446.040	2567.844	3630.974
JPN_LL_EastMed	1992	0.129	0.183	80.190	276.337	71.272	195.138	275.906	541.258	1618.131	8727.312
JPN_LL_EastMed	1993	0.000	34.093	36.530	75.826	84.638	244.900	153.144	170.515	638.904	8275.440
JPN_LL_EastMed	1994	0.000	0.000	78.724	247.575	189.270	180.112	537.037	663.690	759.728	5801.075
JPN_LL_EastMed	1995	2.917	6.172	13.308	327.762	178.264	324.462	955.640	1130.741	1087.685	10504.403
JPN_LL_EastMed	1996	0.000	0.000	78.435	101.094	321.946	252.469	195.178	354.158	503.174	6147.222
JPN_LL_EastMed	1997	0.000	75.331	298.740	292.202	184.106	59.073	132.746	318.227	649.108	3835.898
JPN_LL_EastMed	1998	0.000	0.000	10.563	18.014	65.176	121.233	175.212	301.920	644.135	5685.048
JPN_LL_EastMed	1999	0.000	0.000	0.000	2.258	162.590	272.589	351.904	474.871	1001.131	3301.180
JPN_LL_EastMed	2000	0.000	0.000	0.000	13.902	688.762	520.095	493.063	287.845	427.663	1986.402
JPN_LL_EastMed	2001	0.331	0.000	2.308	44.342	94.768	782.369	930.181	1287.599	743.128	980.448
JPN_LL_EastMed	2002	0.840	0.840	3.822	59.149	598.742	439.561	1938.549	1225.198	686.167	2945.967
JPN_LL_EastMed	2003	0.000	0.000	55.901	184.385	206.185	123.514	327.039	542.082	983.023	3591.918
JPN_LL_EastMed	2004	0.000	0.000	11.777	65.771	204.511	233.321	578.770	542.621	1274.806	2873.871
JPN_LL_EastMed	2005	1.485	34.124	56.117	68.034	105.613	161.004	459.862	561.250	827.737	3125.108
JPN_LL_EastMed	2006	52.964	0.000	312.561	105.795	465.049	526.577	1655.002	1927.258	1728.150	4584.968
JPN_LL_EastMed	2007	5.073	59.370	670.249	505.706	294.872	274.201	413.808	1043.599	838.763	2147.156
JPN_LL_EastMed	2008	0.000	9.742	70.756	51.272	10.596	0.000	30.507	101.263	81.779	244.057
JPN_LL_EastMed	2009	0.000	0.000	1.076	3.650	11.329	12.280	3.188	19.140	44.598	224.576

JPN_LL1_NEA	1990	0.002	19.188	99.013	106.166	371.501	584.962	559.232	586.257	1002.325	1481.688
JPN_LL1_NEA	1991	0.021	141.538	515.242	749.845	923.114	1551.807	2070.247	1173.635	1472.377	4275.442
JPN_LL1_NEA	1992	0.170	18.545	117.083	815.714	1609.782	1165.905	1057.938	1236.216	1573.716	2909.612
JPN_LL1_NEA	1993	0.000	22.009	434.629	1920.685	2482.628	2816.781	2029.454	1176.162	740.523	1545.831
JPN_LL1_NEA	1994	9.255	14.378	306.004	687.391	1123.074	1003.740	2060.314	1948.372	1318.710	1450.743
JPN_LL1_NEA	1995	1.967	13.104	305.642	1264.649	2060.099	4702.686	3495.901	3068.165	2483.528	1924.928
JPN_LL1_NEA	1996	0.000	0.000	162.039	628.789	843.625	1216.874	2568.593	3405.594	3670.455	5716.054
JPN_LL1_NEA	1997	1.773	11.823	17.776	100.940	608.052	1589.412	2279.007	3544.973	3949.507	4132.672
JPN_LL1_NEA	1998	1.252	0.099	149.617	246.850	388.693	1387.243	2751.122	2338.417	3218.176	5614.214
JPN_LL1_NEA	1999	0.000	109.054	122.911	1434.834	2756.708	2784.733	4252.734	3473.901	2204.936	3450.180
JPN_LL1_NEA	2000	0.000	11.071	17.400	51.622	917.201	3779.250	2560.516	4035.250	4708.553	3987.605
JPN_LL1_NEA	2001	50.233	23.679	3.330	104.592	1078.158	5218.086	5284.120	3799.436	2033.794	2294.144
JPN_LL1_NEA	2002	0.004	6.480	33.826	55.435	27.961	206.706	1083.164	4638.480	4481.506	3421.957
JPN_LL1_NEA	2003	10.035	104.364	351.147	1105.856	1529.097	1904.714	1690.184	2116.456	2802.213	5623.928
JPN_LL1_NEA	2004	18.018	303.551	137.940	358.274	407.730	702.347	2682.677	2302.453	1202.530	5267.181
JPN_LL1_NEA	2005	7.064	162.301	266.903	323.585	502.314	765.764	2187.187	2475.445	3378.247	5580.285
JPN_LL1_NEA	2006	44.297	0.000	233.878	83.732	388.950	408.122	1029.020	1159.863	873.688	2275.398
JPN_LL1_NEA	2007	21.205	10.840	1077.931	864.798	974.408	1146.118	986.510	1895.328	1513.781	3029.618
JPN_LL1_NEA	2008	0.000	3.222	8.487	663.605	3971.146	1663.235	6060.392	4077.177	2798.770	2766.862
JPN_LL1_NEA	2009	0.000	1.062	14.271	16.351	137.117	6477.691	3089.950	3086.708	3007.281	1551.535
JPN_LL2_NEA	2010	0.000	0.000	0.000	0.000	8.288	232.807	4875.241	3778.466	518.317	702.671
JPN_LL2_NEA	2011	0.000	0.000	0.000	0.000	2.144	37.412	181.058	3595.002	3814.115	602.240
JPN_LL2_NEA	2012	0.000	0.000	0.000	0.000	0.000	92.947	481.131	757.691	3472.589	2673.202
JPN_LL2_NEA	2013	0.000	0.000	0.000	0.000	1.086	5.431	339.554	2052.205	1849.081	3398.255
JPN_LL2_NEA	2014	0.000	0.000	0.000	0.000	0.000	3.279	45.913	678.851	2106.514	4092.781
JPN_LL2_NEA	2015	0.000	0.000	0.000	0.000	0.000	10.946	140.114	900.891	2634.805	4910.566
SP_BB1	1968	2181.058	4766.437	8097.817	13513.446	3257.350	233.481	51.252	34.168	22.779	841.474
SP_BB1	1969	11211.942	70060.263	9410.654	2143.979	446.940	91.002	10.193	0.000	0.000	952.965
SP_BB1	1970	35184.816	75829.887	10156.383	3699.429	3014.001	1143.962	204.912	563.156	0.000	1934.914
SP_BB1	1971	23820.183	83281.365	3528.737	5074.609	1981.643	492.552	110.006	16.523	0.000	2311.224
SP_BB1	1972	1545.732	88179.080	2184.888	750.950	891.369	796.664	583.251	210.252	26.292	2859.026
SP_BB1	1973	12125.293	129129.401	2146.555	490.262	323.524	568.571	699.477	795.957	662.171	2621.069
SP_BB1	1974	18331.986	70421.139	3819.176	639.872	1334.762	44.484	279.843	0.000	0.000	1549.190
SP_BB1	1975	20496.675	75885.792	3582.306	1400.119	1400.008	124.312	269.713	0.000	0.000	3325.176
SP_BB1	1976	1491.315	28152.945	9525.093	1687.909	1419.815	940.133	373.553	41.588	0.000	2739.855
SP_BB1	1977	6613.610	55150.407	12510.315	6728.479	643.709	242.016	173.427	71.200	0.000	3957.470
SP_BB1	1978	52977.921	45839.777	8044.893	12076.816	6016.011	1537.381	160.790	33.475	70.148	5602.732
SP_BB1	1979	2882.386	9706.954	14641.055	12802.447	3318.529	1295.966	488.196	260.210	644.551	2197.244

SP_BB1	1980	32918.116	18248.193	6874.019	2019.946	2767.010	2423.379	1369.727	207.060	83.812	1522.834
SP_BB1	1981	53134.133	34441.032	2924.223	1515.015	847.162	524.559	325.264	176.274	7.978	1896.796
SP_BB1	1982	15491.584	25338.602	5845.199	2333.359	1470.703	498.992	463.811	246.031	17.755	161.809
SP_BB1	1983	260315.645	57094.705	5106.403	1569.293	215.928	102.641	15.819	21.894	0.000	1335.517
SP_BB1	1984	12440.684	123616.774	22020.995	3898.224	2071.759	374.301	173.028	117.192	17.048	8.757
SP_BB1	1985	15214.505	85475.602	27987.595	5193.554	1311.967	596.945	98.430	8.314	12.342	567.710
SP_BB1	1986	142511.172	51194.210	6060.817	5629.801	1095.988	441.722	55.835	1.417	15.877	333.421
SP_BB1	1987	23534.759	98350.878	1906.691	2945.813	1687.745	1165.567	142.143	18.435	0.000	121.163
SP_BB1	1988	217220.004	58762.008	6414.609	1196.114	1380.811	744.976	348.135	9.963	0.000	445.880
SP_BB1	1989	145376.613	95506.452	4326.091	2335.431	422.043	304.046	120.253	8.927	2.626	1284.329
SP_BB1	1990	57094.756	34513.457	16284.873	3353.038	4346.880	615.179	43.381	277.182	135.698	398.883
SP_BB1	1991	34542.464	48838.342	3546.074	3677.421	1813.768	645.626	357.943	159.516	63.979	194.497
SP_BB1	1992	21716.658	51766.216	5920.862	1624.567	608.048	171.353	23.952	69.880	32.733	95.600
SP_BB1	1993	28871.685	157853.480	47785.222	14582.551	3243.721	1280.599	156.697	79.002	33.616	102.193
SP_BB1	1994	84039.313	31449.314	15752.819	7392.120	3961.062	364.294	5.204	23.754	20.586	212.724
SP_BB1	1995	155047.280	78036.842	34811.828	3946.193	398.958	193.826	6.000	5.078	1.470	15.195
SP_BB1	1996	242427.528	73522.498	68450.873	26614.201	8286.554	439.203	46.021	27.508	53.496	641.370
SP_BB1	1997	232586.396	119134.844	116331.100	25327.805	8416.306	472.630	32.922	23.695	39.128	1347.848
SP_BB1	1998	49751.677	53718.483	26785.583	23449.606	1217.099	875.470	571.415	201.346	28.016	725.889
SP_BB1	1999	4844.727	4374.066	3299.429	10396.332	10710.615	2232.505	577.013	94.203	60.293	170.832
SP_BB1	2000	41477.775	22673.833	12149.339	4341.027	5862.376	3415.653	956.978	1277.226	778.819	596.302
SP_BB1	2001	2349.005	98275.493	24419.592	5217.017	1529.907	1837.213	1085.981	283.209	614.469	867.881
SP_BB1	2002	30757.774	81019.683	39021.222	4163.217	1030.961	239.219	172.797	411.184	435.101	840.849
SP_BB1	2003	7042.124	32260.438	11175.112	974.482	1547.608	877.075	170.751	387.543	1301.243	1287.329
SP_BB1	2004	65715.097	57991.083	8486.855	5715.550	1453.018	678.649	323.694	100.525	205.211	1296.042
SP_BB1	2005	133943.015	44372.151	23971.974	3461.694	2685.263	520.792	155.707	64.819	39.897	529.299
SP_BB1	2006	30906.800	23325.203	13921.525	6359.722	1204.216	967.034	434.236	80.744	59.407	440.325
SP_BB2	2007	18803.040	38677.457	27817.417	17969.568	6343.453	1891.277	665.170	156.560	98.956	894.008
SP_BB2	2008	298.838	52587.281	35478.609	16611.151	2351.542	102.990	397.691	233.180	300.226	1070.880
SP_BB2	2009	44.467	12772.378	14152.141	5763.972	2068.793	3064.159	936.386	331.164	301.775	533.189
SP_BB2	2010	122.767	16606.885	7517.981	4134.842	901.151	285.710	608.584	116.543	99.611	206.712
SP_BB2	2011	0.000	5604.526	4193.105	2763.694	3140.259	1237.593	224.208	267.327	86.397	289.384
SP_BB2	2012	0.000	0.000	3120.407	2506.080	861.316	103.985	55.007	25.393	55.699	211.347
SP_BB2	2013	0.000	7.861	90.975	564.728	399.639	224.428	37.459	118.274	17.651	732.131
SP_BB2	2014	0.000	37.156	110.068	268.796	141.636	37.876	14.088	9.873	15.951	326.441
SP_BB2	2015	0.000	166.079	2218.905	163.938	49.358	5.977	2.121	6.979	20.973	583.938
WMED_LARV	2001	0	0	0.25	0.5	1	1	1	1	1	1
WMED_LARV	2002	0	0	0.25	0.5	1	1	1	1	1	1

| WMED_LARV | 2003 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WMED_LARV | 2004 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
| WMED_LARV | 2005 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
| WMED_LARV | 2006 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
| WMED_LARV | 2007 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
| WMED_LARV | 2008 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
| WMED_LARV | 2009 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
| wMED_LARV | 2010 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
| WMED_LARV | 2011 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
| WMED_LARV | 2012 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
| WMED_LARV | 2013 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
| WMED_LARV | 2014 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |
| WMED_LARV | 2015 | 0 | 0 | 0.25 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 |

[^0]: 1 IFREMER (Institut Français de Recherche pour l'Exploitation de la MER), UMR MARBEC, Avenue Jean Monnet, BP171, 34203 Sète Cedex, France. Tristan.rouyer@ifremer.fr
 2 National Research Institute of Far Seas Fisheries, 5-7-1 Orido Shimizu, Shizuoka 424-8633, Japan
 3 ICCAT Secretariat, C/Corazon de Maria, 8, 28002, Madrid, Spain
 4 National Oceanic and Atmospheric Administration, Southeast Fisheries Science Center, 75 Virginia Beach Dr. Miami, FL, 33149
 5 Institut National des Sciences et Technologies de la Mer (INSTM-Mahdia), BP 138 Mahdia 5199T, Tunisia
 6 AZTI - Tecnalia /Itsas Ikerketa Saila, Herrera Kaia Portualde z/g, 20110, Pasaia, Gipuzkoa, Spain
 7 Institut National de Recherche Halieutique (INRH), Regional Centre of Tangier, Tangier, Morocco

