

DLMtool Course (v4.1)

Tom Carruthers and Adrian Hordyk

April 2017

Course agenda

-- Day 1 --

- 1. Introduction
- 2. Running DLMtool
- 3. Customizing DLMtool

-- Day 2 --

- 4. Making recommendations with DLMtool
- 5. Advanced DLMtool
- 6. Robustness testing and ecosystem considerations

-- Day 3 --

Case Study 1: longtail tuna

Case Study 2: yellowfin tuna

Module 1: Introduction

(~ 2 hours)

		(Ellears)
Audience:	Non quantitative fisheries audience including: managers, scientists and	policy analysts
Purpose:	Provide users with a conceptual framework for later modules; brief fish potential value	ery managers on
Objectives:	Understand the problem DLMtool solves, its conceptual underpinnings, and its current use in management and see a user friendly demo of DLM action.	
Lecture 1a: Fo	oreword	(< 10 minutes)
- - -	Objectives Intended audience (skill set) Course outline Online resources	
Lecture 1b: B	Background	(~ 30 minutes)
- - -	Problem statement (why we need to 'crunch the numbers') Terminology MSE Detailed outcomes (MPs, robustness testing, VOI)	
Lecture 1c: W	Vhat is DLMtool?	(~ 30 minutes)
- - - -	Overview (free R package, simulation testing, software design considera Features Case studies (SEDAR, California, DFO) Correct usage Online demo Future additions	ations)
Lecture 1d: H	low do management procedures work?	(~ 20 minutes)
-	Anatomy of an MP Schematic examples of MPs	
Exercise 1: O	nline demo	(~ 30 minutes)
-	Specifying simulations Understanding MSE	

- Summarizing performance
- Interpreting trade-offs

1odule 2: Rur	nning DLMtool	(~ 1h 5m)
Audience:	Quantitative fisheries scientists familiar with R	
Purpose:	Demonstrate how to get DLMtool working and providing familiarity with a DLMtool MS process	
Objectives:	Get all users to the same stage WRT software installation before c modules; Understand the basic structure of a DLMtool MSE run; re understanding of what performance metrics are telling us (e.g. wh what is 'POF' anyway?)	einforce an
Lecture 2a: G	etting started	(~ 10 minutes)
LoadinSetting	ation (RStudio, R, installing package from CRAN) g the package g up parallel processing and loading objects installation and test run g help	
Lecture 2b: A	simple 'no frills' run of DLMtool	(~ 30 minutes)
 Constr Visuali Runnir Visuali Evalua 	esign: Stock, Fleet, Observation and Implementation objects ucting operating models zing operating models ng an MSE zing MSE runs ting performance off plots	
Exercise 2a	: An R script for installation and validating installation	(~ 10 minutes)
 Finding Impler Constr 	: A basic DLMtool run g alternative pre-specified Stock, Fleet, Observation error (Obs) nentation error (Imp) objects. ucting an operating model (OM) from these premade objects. zing DLMtool Stock, Fleet, Obs, Imp and OM objects	(~ 15 minutes)
- Evalua	ting MSE outcomes for varying operating models	

- Understanding the various pre-specified performance metrics

Module 3: Cus	tomizing DLMtool	(~ 4 hours)
Audience:	Quantitative fisheries scientists familiar with R	
Purpose:	e: Educate and inform users on some of the basic functionality / flexibility of the toolkit	
Objectives:	es: Understand OO design of DLMtool, be able to customize operating models, MSE runni options and produce custom performance metrics	
Lecture 3a: N	Iodifying operating models	(~ 1 hour)
- Stock o - Fleet o - Observ	put file conventions objects objects vation objects nentation error objects	
Lecture 3b: S	pecifying MPs and other MSE outputs	(~ 30 minutes)
- Conve - Value	ying MPs for MSE rgence diagnostics of information (VOI) f current uncertainties (CCU)	
Lecture 3c: C	ustom performance analysis	(~ 30 minutes)
	reting the data stored in the MSE object (MSE object structure) ing performance metrics lots	
Exercise 3a: I	Modifying operating models	(~ 1 hour)
Exercise 3b: S	Selecting MPs and other MSE outputs	(~ 30 minutes)
Exercise 3c: (Custom performance metrics	(~ 30 minutes)

1odule 4: Ma	king recommendations with DLMtool	(~ 2h 20m)
Audience:	Quantitative fisheries scientists familiar with R (who hav	e completed Module 3)
Purpose:	Make management recommendations using DLMtool	
Objectives:	Learn how to process data to provide management advi	ce using the MPs of DLMtool
Lecture 4a: T	he format of fishery data for DLMtool	(~ 30 minutes
- Time s	series data	
- Param		
- Uncer		
Lecture 4b: F	Running MPs	(~ 40 minutes
-	Can't / Needed functions	
	ating TAC or effort recommendations ivity analysis	
Exercise 4a:	Processing data	(~ 30 minutes
	e Data object	•
-	t Data object from .csv files	
- Deter	nine which MPs can be applied to Data	
Exercise 4b:	Calculating management advice	(~ 40 minutes
- Apply	Output controls to Data object	
	Input controls to Data object	
- Sensit	ivity analysis on TAC recommendations	

1odule 5: Adv	vanced DLMtool	(~ 4h 10m)
Audience:	Quantitative fisheries scientists familiar with R (who have co	mpleted Module 3)
Purpose:	Build on previous models to provide a complete account of I	DLMtool functionality
Objectives:	Learn advanced features of DLMtool – currently big issues ar custom MPs	e OM specification and
Lecture 5a: A	dvanced operating model specification	(~ 30 minutes)
 Time v Param Condit 	ying historical effort trends varying selectivity eter cross correlation cioning operating models by SRA cioning operating models by SS	
- The fo - A cons - A mor	Custom Management Procedures 1: output controls rmat of DLMtool simulated data (Data) stant catch MP e complex output control MP or MP design	(~ 40 minutes)
- Effort - Spatia	ustom MPs 2: input controls controls l controls nits (relative to maturity and in absolute terms)	(~ 30 minutes)
- Specif - Time v - Preser - Condit	Advanced operating model specification ying historical effort trends varying selectivity ving correlation among estimated growth parameters cioning OM by Stochastic Stock Reduction Analysis cioning OM by Stock Synthesis	(~ 30 minutes)
	Custom output control MPs	(~ 40 minutes)

(~ 30 minutes) Exercise 5c: Custom input control MPs

/lodule 6: Rol	oustness Testing and Ecosystem Considerations	(~ 2h 40m)
Audience:	Quantitative fishery scientists familiar with R (who have comple	eted Module 3)
Purpose:	Demonstrate the role of robustness testing and provide examp ecosystem impacts may be addressed by simulating time-varyin parameters	
Objectives:	Users should understand the difference between sensitivity in recommendations versus sensitivity in selection of managemer consider what ecosystem changes may be occurring in their sys operating models to address these.	nt procedures. Users should
Lecture 6a: R	obustness testing and MP selection	(~ 40 minutes)
- MP se	lection by satisficing	
	y of data	
-	g efficiency (output versus input controls)	
•	nentation error g confidence in a management system	
	ime varying parameters and ecosystem considerations	(~ 40 minutes)
- Growt	h	
- M		
- Recrui	tment	
Exercise 6a:	Robustness testing	(~40 minutes)

Case Study 1:	IOTC case study, longtail tuna	(~3 hours)
Audience: Purpose:	Quantitative fishery scientists familiar with R (who have completed Mo Describe how operating models were developed for a data-limited ABN	IJ tuna stock
Objectives:	Users should understand the various data-limited methods for specifying operating models that make use of life-history theory, imputation and historical stock reconstruction	
Lecture CS1:	longtail tuna operating model specification	(~1 hour)
Exercise CS1	longtail tuna analyses and interpretation	(~2 hours)

Case Study 2: IOTC case study, yellowfin tuna	(~3 hours)

Audience:	Quantitative fishery scientists familiar with R (who have completed Module 3)
Purpose:	Describe how operating models were developed for a relatively data rich ABNJ tuna stock
Objectives:	Users should understand how to convert stock assessment outputs to DLMtool operating model specification using the various tools available in the package.

Lecture CS2: yellowfin tuna operating model specification	(~1 hour)
Exercise CS2: yellowfin tuna analyses and interpretation	(~2 hours)